

Large-signal inductor loss measurement on integrated inductors PwrSOC 2014

Custom
Integrated Power
Management
Solutions

Dr. Jef Thoné, Dr. Mike Wens MinDCet NV, Belgium

Abstract

A novel method is presented to measure inductor losses – based on an actual power conversion application.

Compared to commercial lab equipment, hard switching of the inductor is used to provide information about:

- AC loss
- DC loss
- Dynamic saturation
- Self heating prediction

This patented measurement method was implemented in a commercially available measurement system for discrete inductors, MADMIX.

The described measurement method was proven using a custom developed high-speed driver with small footprint air-core and ferrite inductors, as a proof-of-concept for the measurement of fully-integrated inductors.

Objective

- High-speed and highly/fully integrated inductive convertors require a careful trade-off between the involved power losses in the power switches, and power inductor, to maintain converter efficiency.
- While fairly straightforward to assess the driver losses, it has become critical to understand saturation and loss dynamics involved in the power inductor.
- Existing methods for measuring inductors and their losses depend on small signal analysis, not representative for the switching application
- Objective: provide a method for measuring inductor losses, saturation effects and inductance variations depending on the operating point, suitable for integrated inductors.

Method

The inductor-under-test is hard switched, while measuring the transient inductor voltage and currents.

By post-processing of the transient inductor and current waveforms, the inductance, the AC and DC power loss and dynamic saturation can be calculated [3]:

$$L = \frac{R_{LS}.t_{on}}{ln\left[\frac{I_{min}.R_{LS} - U_{Lg1}}{I_{max}.R_{LS} - U_{Lg1}}\right]}$$

$$P_{loss} = \frac{1}{T} \cdot \int_0^T i_L(t) \cdot u_L(t) dt$$

Large-signal inductor loss measurement on integrated inductors PwrSOC 2014

Dr. Jef Thoné, Dr. Mike Wens MinDCet NV, Belgium

Measurements

The described measurement method was proven using a custom developed high-speed driver with small footprint air-core inductors, as a proof-of-concept for the measurement of fully-integrated inductors.

2 inductors were compared to quantify total P_{AC} over afrequency range of 6-20 MHz.

Inductor A:

• 150nH aircore inductor, with RDC = 590m0hm

Inductor B:

• 180 nH ferrite inductor, with RDC = 1.6m0hm

Measurement setup

Inductor V/I waveforms

Inductor A

AC losses vs frequency

Inductor B

AC losses vs frequency

Large-signal inductor loss measurement on integrated inductors PwrSOC 2014

Custom
Integrated Power
Management
Solutions

Dr. Jef Thoné, Dr. Mike Wens MinDCet NV, Belgium

Interpretation

For a given inductance, the ripple current decreases with an increasing switching frequency.

Inductor A (aircore)

 AC Power losses are determined by the total resistance (DC resistance and skin effect) and the RMS current.

Inductor B (ferrite core)

 AC Power losses are determined by the ferrite core losses, which depend largely on the current ripple magnitude.

Conclusion

Conventional inductor loss measurement use small signal impedance analysis, at sinewave excitation [1] or core loss estimation through B-H curve measurement [2]. These methods do not reflect the actual power conversion application with hard-switched waveforms.

The proposed method provides the power designer the proper data to maximally optimize its converter design: inductor power loss, inductance, dynamic saturation, self-heating prediction, ... at any given operating point.

References

[1]http://cp.literature.agilent.com/litweb/pdf/5 950-2367.pdf

[2]https://www.iti.iwatsu.co.jp/en/products/sy/bh_ana_e.html

[3]http://worldwide.espacenet.com/publication Details/biblio?CC=WO&NR=2013110145A1&KC =A1&FT=D